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The classical edge-wave problem is addressed by scaling the governing equations,
for small slope (ε) at the shore, according to the exact edge-wave solution (for
uniform slope) which is based on the Gerstner solution of the water-wave problem.
The bottom is allowed to be any suitable profile which varies on the scale of this
small parameter; a multiple-scale method is then employed to construct the solution.
The leading-order equations – which are a version of the shallow-water equations –
are fully nonlinear, but an appropriate exact travelling-wave solution exists; the
next term in the asymptotic expansion, valid for ε → 0, is also found and, from this,
uniformity conditions are deduced. The results are used to describe the run-up pattern
produced by edge waves at the shoreline, based on any mode other than the first; this
pattern corresponds closely with what is observed, and also with the exact solution
for uniform slope everywhere. The surface wave, from the shoreline, seawards, is des-
cribed for various depth profiles (such as a constant depth at infinity or with a
sand bar close inshore). The problem for the first mode, which corresponds to a
non-uniformity in the expansion, is briefly discussed; in this case, it is not possible to
find an exact closed-form solution.

The corresponding analysis in the case when a longshore current (varying on the
same scale as the depth) is flowing, in addition to a general depth profile, is also presen-
ted, and the notion of an effective depth profile is confirmed. Finally, a brief mention
is made of model equations for edge waves (which have single-mode exact solutions);
these may provide the basis for further investigations into the interaction of modes.

1. Introduction
The edge-wave solution of the linear water-wave problem for propagation over a

uniform sloping beach was first reported by Stokes (1846). These waves propagate
along the beach (i.e. in the longshore direction) and have an amplitude which decays
exponentially away from the shoreline (so they provide an example of a trapped wave);
a sloping beach is essential for their existence. Although such waves may be thought to
be no more than a mathematical curiosity, they have been found to play an important
role in many processes near the shoreline; see Howd, Bowen & Holman (1992) (and
the many papers cited therein) for an informative background to this problem.
In addition, their presence often results in an intriguing – and quite delightful –
pattern of trochoidal or, sometimes, cycloidal waves marking the shoreline; some
splendid photographs of these run-up patterns can be found in Guza & Inman (1975)
and in Komar (1998).

Many authors have made important contributions to the theory of edge waves; we
mention a few that have been particularly relevant to the current investigation (and
each contains further references for those who may wish to explore the background
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more deeply). Ursell (1952) demonstrated that more (linear) edge-wave modes appear
as the (constant) slope of the beach is progressively decreased; an instructive overview
of much of the classical linear theory is presented in Stoker (1957) (and a slightly more
modern approach, for simple linear edge waves, is offered in Johnson, 1997). Nonlinear
effects in the small-amplitude approximation, based on the shallow-water equations,
and then on the full equations (both for constant beach angles), were described
by Whitham (1976); this work was extended to more general depth variations by
Minzoni (1976). The problem of linear edge waves over a gently sloping beach has
been addressed by Miles (1989), in which a result is obtained (for a uniformly valid
approximation for the dominant mode) which is generalized here. Mechanisms for the
excitation of edge waves have been discussed by Minzoni & Whitham (1977) and by
Evans (1988, 1989). Extensive experimental results are reported in Yeh (1985), which
describe the evolution and modulation of the edge waves in far more detail than we
attempt here. However, the main impetus for the present work came from another
quarter.

In 1966, Yih demonstrated that a coordinate transformation of Gerstner’s 1802
exact non-trivial solution of the classical water-wave problem for infinite depth (see
Lamb 1932), produces an edge-wave solution for a beach of constant slope. A
similar observation is given by Mollo-Christensen (1982). These authors provide an
implicit solution of the problem, but this has recently been improved by Constantin
(2001), and on two levels. First, he proved that the flow was dynamically possible –
the flow map is a diffeomorphism – and then he produced a particularly simple
parametric representation of the run-up pattern on the beach (by using the Lagrangian
description of the flow field). It was this version of the exact solution which prompted
the investigation that we describe here. In essence, we will allow the depth to vary
on a slow scale (which will be the slope at the beach), introduce scalings consistent
with the Gerstner–Constantin solution and then develop an asymptotic solution by
employing the method of multiple scales. By virtue (we might argue) of the existence
of the exact solution for a uniform slope, it is possible to find an exact solution
for variable depth, at leading order, without the need to invoke an additional small-
amplitude approximation. However, because of the particular form of solution that
we seek here, we generate a solution which is irrotational, whereas the original
Gerstner solution, and Constantin’s, describes a solution with a non-zero vorticity. (A
small-amplitude approximation can always be introduced if that might lead to useful
additional results.)

On following the formulation of the problem, based on suitable scaled variables
defined in terms of the small slope (ε) of the beach, the bottom profile is allowed
to be a general function of the appropriate ‘slow’ variable. The first two terms in
the asymptotic solution, uniformly valid in space (and time) as ε → 0, are obtained
and a representation of the surface wave is given; in particular, the run-up pattern is
described. The properties of the solution for various depth profiles are also presented,
including the cases of a constant depth at infinity or with a sand bar fairly close
inshore. We also include, in addition to a general depth variation, a longshore current
(which varies on the same scale as the depth). We confirm that some elements of
the solution are described by replacing the actual depth profile by an ‘effective’ one,
which incorporates the given longshore current; this aspect of our new profile agrees
with that introduced by Howd et al. (1992). Finally, some model equations with exact
solutions, which represent a single mode, are offered; these equations may prove
worthy of some further investigation, particularly as a means for exploring the nature
of the interactions between two or more modes.
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Figure 1. Sketch of the surface wave, z = h(x, y, t), and the variable bottom, z = b(x); y is
the longshore coordinate and the seawards direction is x → ∞.

2. Governing equations
We consider an incompressible, inviscid fluid which is bounded above by a free

surface (z = h(x, y, t)) and below by a fixed impermeable bed (z = b(x), so not a
function of y). In its undisturbed state, the free surface is z =0 and this intersects
z = b(x) at x = 0 – the shoreline in the absence of waves; the fluid extends to infinity
as x → ∞ and otherwise −∞ <y < ∞ (where y is the longshore coordinate). This
configuration is shown in figure 1. We choose to use a typical (or mean) wavelength,
λ, of the edge waves as the length scale and

√
gλ as the speed scale; thus we take

λ/
√

gλ as the appropriate time scale. The pressure (P ) is written as

P = Pa − ρgz + ρgλp,

where ρ is the constant density of the water, g is the constant acceleration due to
gravity and P = Pa = constant is the pressure at the free surface. (We ignore the role
of surface tension in this model.) The Euler equation, equation of mass conservation
and the boundary conditions, written in non-dimensional variables, are then

Du
Dt

= −∇p; ∇ · u = 0 (x ≡ (x, y, z), u ≡ (u, v, w)),

with

p = h, w =
Dh

Dt
on z = h(x, y, t)

and

w = u
db

dx
on z = b(x),

where
D

Dt
≡ ∂

∂t
+ u

∂

∂x
+ v

∂

∂y
+ w

∂

∂z
.

It will be assumed that suitable initial data exist which will generate the edge
waves. We use the Euler equation as the basis for this formulation because we make
no assumptions, ab initio, about the rotationality of the flow field (see Constantin
2001). We will find, in the event, that our construction produces a solution which is
irrotational.

The edge waves propagate parallel to the shore (so in the y-direction) and otherwise
they have a structure in the x-direction; in particular, the wave amplitude decays
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exponentially away from the shoreline. It is probable that the pattern observed at
the shoreline is generated by standing waves, but we shall follow the conventional
route in this discussion and analyse only travelling waves. In order to accommodate
this configuration, and to be consistent with the appearance of the slope of the
uniform bed in Constantin (2001), we introduce suitable scaled variables. Let ε be
the magnitude of the slope b′(0) and, further, we assume that the depth varies slowly
on this scale; we define the bottom by z = b = −B(X), X = εx, with B ′(0) = 1. (The
change of sign is merely a convenience.) In addition, we define

ξ = �y − ω
√

ε t, θ = ε−1

∫ X

0

α(X′; ε) dX′,

where � (>0) is a given wavenumber and ω (=constant) is to be determined, as is
α(X; ε). In Constantin (2001), the velocity components, (u, v, w), are easily seen to
be proportional, correspondingly, to (cosα

√
sin α,

√
sin α, sin α

√
sin α), where α is the

uniform slope of the bottom; similarly, p and h are proportional tosinα. Thus, in our
formulation, u, p and h are rescaled according to

(u, v, w) →
√

ε(u, v, εw); (p, h) → ε(p, h);

the resulting non-dimensional, scaled equations are

Du

Dt
= −(αpθ + εpX);

Dv

Dt
= −�pξ ; ε

Dw

Dt
= −pz; (1a, b, c)

αuθ + �vξ + εuX + εwz = 0, (2)

with

p = h, w = −ωhξ + αuhθ + �vhξ + εuhX on z = εh (3a, b)

and

w = −uB ′(X) on z = −B(X), (4)

where
D

Dt
≡ −ω

∂

∂ξ
+ αu

∂

∂θ
+ �v

∂

∂ξ
+ εu

∂

∂X
+ εw

∂

∂z
.

(We have used subscripts, where convenient, to represent partial derivatives.)
Equations (1)–(4), provide the basis for our discussion of the problem, in the limit
ε → 0. Because these equations have been scaled for small slope, they are a version of
the shallow-water equations. It should be noted, however, that this particular scaling
has resulted in the nonlinearity being retained at leading order; if a small-amplitude
approximation is also of interest, then the further scaling

(u, v, w, p, h) → δ(u, v, w, p, h) with δ → 0, (5)

can be adopted.

3. Asymptotic procedure and basic results
Each of the variables (u, v, w,p,h) is written as an asymptotic expansion in ε:

q ∼
∞∑

n=0

εnqn(q ≡ u, v, w, p, h),

and the problem at each order is formulated. It is expected that uniformity conditions
will need to be imposed, presumably as |θ | → ∞, and that these will be necessary in
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order to determine completely the earlier terms in the expansions. Furthermore,
we observe that the velocity component in the z-direction, w, appears at O(ε)
relative to the other components (u, v) in equation (2); it is usual, in shallow-
water approximations, to find that w is determined at leading order, rather than
successively from terms lower down the expansion, as is the case here. In addition to
the expansion of the dependent variables, we also allow

α(X; ε) ∼ α0(X) +

∞∑
n=2

εnαn(X), (6)

where the term εα1(X) is omitted because it can be subsumed into any amplitude
function (which, in general, depends on X); there is no advantage – at least, to the
order we work to here – in also expanding the constant ω.

The leading-order problem, obtained from equations (1a), (1b), (1c), (2) and (3a),
respectively, is

−ωu0ξ + α0u0u0θ + �v0u0ξ = −α0p0θ , −ωv0ξ + α0u0v0θ + �v0v0ξ = −�p0ξ ,

p0z = 0, α0u0θ + �v0ξ = 0,

with

p0 = h0 on z = 0.

This set of shallow-water equations has the particular exact solution (selected by the
requirement for the velocity components to be simple trigonometric functions of ξ , a
form that corresponds to the irrotational solution of Stokes, and others)

p0 = h0 = A0(X)eθ cos ξ − 1

2

�2

ω2
A2

0e
2θ , (7a)

u0 = − �

ω
A0e

θ sin ξ, v0 =
�

ω
A0e

θ cos ξ, (7b, c)

for arbitrary A0 (X) and ω; we have chosen to set α0 = −� so that θ ∼ −�X/ε (i.e.
eθ → 0 as X → +∞). This solution, which appears to be a new exact solution of the
shallow-water equations which does not exhibit wave steepening, is then consistent
with the initial surface profile

h ∼ A0(εx)e−�x cos(�y) − �2

2ω2
A2

0e
−2�x

for some A0(εx).
At the next order, we obtain the set of equations

−ωu1ξ + α0(u0u1)θ + �(v0u1ξ + v1u0ξ ) + u0u0X = −(α0p1θ + p0X), (8)

−ωv1ξ + α0(u0v1θ + u1v0θ ) + �(v0v1)ξ + u0v0X = −�p1ξ , (9)

−ωw0ξ + α0u0w0θ + �v0w0ξ = −p1z, (10)

α0u1θ + �v1ξ + u0X + w0z = 0, (11)

with

p1 = h1, w0 = −ωh0ξ + α0u0h0θ + �v0h0ξ on z = 0 (12a, b)

and

w0 = −u0B
′(X) on z = −B(X). (13)
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(The boundary conditions on the surface, z = εh, are rewritten to all orders as
evaluations on z = 0 by assuming the existence of Taylor expansions about z = 0.)
This set has the solution for v1, with z ∈ [−B(X), 0], which takes the form

v1 = �A1ξ + V1,

where A1(ξ, θ, X) satisfies

�2(A1θθ + A1ξξ ) +
1

ωB
(ω2A0 − �A0B

′ − 2�A′
0B)eθ sin ξ − �4A3

0

ω3B
e3θ sin ξ = 0;

the function V1, which is bounded, is defined below. (Corresponding expressions
appear for u1 and h1.) Now the asymptotic expansion for v (and, similarly, for u

and h) is uniformly valid as θ → −∞ and |ξ | → ∞ only if the coefficient of the term
eθ sin ξ in the equation for A1 is zero, i.e.

A0B
′ + 2BA′

0 =
ω2

�
A0.

With this condition imposed, the solution of the set can be written as

w0 =

{
ω − �4

ω3
A2

0e
2θ +

1

B

(
ω +

�

ω
B ′ − �4

ω3
A2

0e
2θ

)
z

}
A0e

θ sin ξ + W0, (14)

u1 =

(
A′

0

ω
− 3�3

8ω3

A3
0

B
e2θ

)
eθ sin ξ + U1 (15)

v1 =
�3

8ω3

A3
0

B
e3θ cos ξ + V1, (16)

where the functions W0, U1, V1 and p1 are described in the Appendix; these do not
contribute to the description of the surface perturbation, h1, which becomes

h1 =
�2

8ω2

A3
0

B
e3θ cos ξ +

�

8ω2

(
�3

ω2

A3
0

B
e2θ − 4A′

0

)
A0e

2θ cos 2ξ

+
�

4ω2

(
2A′

0 − �3

ω2

A3
0

B
e2θ

)
A0e

2θ . (17)

The uniformity condition is solved to give

A0(X) =
1√

B(X)
exp

{
ω2

2�

∫ X dX′

B(X′)

}
, (18)

which is a generalization of a result obtained by Miles (1989) as a contribution to his
uniformly valid expansion for the linear dominant mode for edge waves propagating
over a small uniform slope. The non-uniformity that is evident in (15) and (16), as
B → 0 for general ω, will be addressed below.

The investigation was continued (in outline) as far as the next terms in the
expansions, but no additional complications were encountered. A uniformly valid
solution can be found, although a similar analysis to that described in the Appendix
(for W0, U1, V1 and p1) is required at this order and, indeed, at every order
thereafter. The evidence of the first two terms of this type, in conjunction with
the general structure of this problem, suggests that no non-uniformities arise from
these contributions to the solution. The solutions appearing at higher order merely
produce (small) corrections to the solution as presented here, although considerable
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technical complications are evident in the formulation; because of this, we do not
record the details.

The vorticity, ω, of this flow field, following the non-dimensionalization and scaling
introduced earlier (with ω →

√
ε ω), can be written

ω ≡ (ε�wξ − vz, uz − ε(αwθ + εwX), αvθ + εvX − �uξ ), (19)

where (u, v, w) are the velocity components used in (1)–(4). When this is calculated
for the velocity field

u = u0 + εu1 + O(ε2), v = v0 + εv1 + O(ε2), w = w0 + O(ε),

using (14), (15) and (16) (together with the further details given in the Appendix),
we find that ω = O(ε2), i.e. the flow field is irrotational, correct at O(ε). Thus, our
procedure is generating a solution which is an extension of the classical results
discussed by Stokes (1846) and Whitham (1976), for example, but without invoking a
small-amplitude approximation. On the other hand, the exact solution for B(X) = X,
described by Constantin (2001), possesses a non-zero vorticity (which is always in
the direction perpendicular to the bottom). This exact solution, following our non-
dimensionalization and scaling, can be expressed as

u ≡ 1√
�
e�(b−c)(sin ς, − cos ς, − sin ς )

where

ς = a� − t
√

ε�, y = a − �−1e�(b−c) sin ς,

together with corresponding definitions for x and z (see Constantin 2001). Here, the
parameters a, b and c describe the position of a particle at t = 0 in a Lagrangian
representation (although the identification of that position is not simply (a, b, c)).
Now, in our construction of the solution, we have taken the longshore propagation
variable to be simply ξ = �y − (ω

√
ε)t , i.e. a = y (and ω =

√
� here). We might surmise,

therefore, that if we seek a more general solution in which ξ is defined to include a
nonlinear correction, an asymptotic form of the rotational solution will be generated;
this is left as an investigation for the future.

4. The edge wave
At the order to which we have obtained the details, the surface wave is

h(θ, X, ξ ; ε) ∼ A0 eθ cos ξ − �2

2ω2
A2

0e
2θ + ε

{
�2

8ω2

A3
0

B
e3θ cos ξ

+
�

8ω2

(
�3

ω2

A3
0

B
e2θ − 4A′

0

)
A0e

2θ cos 2 ξ +
�

4ω2

(
2A′

0 − �3

ω2

A3
0

B
e2θ

)
A0e

2θ

}
, (20)

where

A0(X) =
1√

B(X)
exp

{
ω2

2�

∫ X dX′

B(X′)

}
. (21)

The shore (beach) is described by B(X) ∼ X as X → 0, and so

A0(X) ∼ kXβ, β =
1

2

(
ω2

�
− 1

)
as X → 0, (22)
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where k is a constant which is determined by the amplitude of the wave for some
X > 0. If A0(X) and all its derivatives, exist as X → 0, then we require

β =
1

2

(
ω2

�
− 1

)
= n (n = 0, 1, 2, . . .), (23)

which recovers the classical result for the modes of linear edge waves (conventionally
obtained via the properties of the Laguerre equation). Further, this result also affords
a measure of agreement with Minzoni (1976) where variable depth (in particular, finite
depth at infinity) was incorporated within the shallow-water model, yet the eigenvalue
problem is the same as for the classical constant-slope problem. However, the uniform
validity of our asymptotic expansion (20) imposes an additional constraint: we require
that (A2

0/B)e2θ remains bounded for all X, from the run-up on the beach to infinity.
For X → 0 (which will apply in the neighbourhood of the run-up), we must have 2n> 1
(when we elect to use (23)), and so our asymptotic solution is not valid for the lowest
mode (n= 0), but it does hold for all the others (n= 1, 2, . . .). The exponential decay
as X (and x) → +∞ ensures the validity seawards. A discussion of the lowest mode is
given in § 5, although as we indicate there a leading-order closed-form solution has
not been found in this case.

The run-up pattern on the beach is given by the intersection of the surface wave
with the bottom profile there, i.e.

z = −B(X) = εh

and with B(X) ∼ X as X → 0, we will take this to be

−x ∼ A0e
θ cos ξ − �2

2ω2
A2

0e
2θ (24)

(and the correction term, εh1 from (17), could be included if that was thought to
be useful). For the discussion presented here, we take (24) as the equation that
describes the run-up pattern at the shoreline, with A0(X) given by (22) (for β = n) and
θ = −�X/ε = −�x. In equation (24), because it has been generated by a multiple-scale
technique, we should treat X, θ and ξ each as O(1) and independent; however, for
the purposes of producing graphical results, we must be somewhat cavalier in our
interpretation. Thus, we choose to use a suitable normalized version of this equation:

1 + µZn−1e−Z cos ξ − µ2

2(1 + 2n)
Z2n−1e−2Z = 0, (25)

where Z = �x, µ = kεn/�n−1 (for n= 1, 2, . . .) and the root Z = 0 has been eliminated.
We suggest, even with µ = O(1), that this is worth examining as a basis for a
representation of the run-up pattern. Indeed, because k here is associated with the
amplitude of the wave (see (22)), some freedom in its choice is permitted (although,
formally, for k and � both O(1), we see that µ = O(εn)). It is straightforward to
show that solutions exist of this equation that are continuous, bounded and periodic
for µ � µn > 0 (for suitable µn, described below). The solutions for µ<µn comprise
closed curves, spaced periodically, which coalesce for µ = µn to form two near-cycloids
that meet at their cusps; for µ>µn, these curves separate to become a pair of curves
that correspond to trochoids. These profiles are analogous to the cycloid and trochoid
given in Constantin (2001), although here we have a pair in each case, and either is
an acceptable solution – pointing either towards the shore or seawards. (That these
two possibilities can occur appears to be borne out in some of the observations of
edge waves, i.e. profiles can ‘point’ either seawards, or towards the beach; see Guza &
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Figure 2. (a) Cycloid-like run-up pattern, obtained from (25), for n= 2, µ= 5 · 865.
(b) A pair of trochoid-like patterns, for n= 1, µ= 8.

Inman 1975; Komar 1998.) For (25), a routine numerical investigation yields the
values µ1 ≈ 7 · 27, µ2 ≈ 5 · 87 and µ3 ≈ 2 · 67; an example of a cycloid-like profile
(n= 2, µ = 5 · 865) is presented in figure 2(a) (this being one of a pair), and a pair of
trochoid-like profiles (n = 1, µ =8) is shown in figure 2(b). By comparison, the exact
solution (Constantin 2001) requires, of course, the choice B(X) = X (for ∀X) and, in
addition, this solution corresponds only to the lowest linear mode (equivalently n= 0
here); the parameter b0 � 0 in Constantin plays the role of our µ � µn. Even though
we have been cavalier with our interpretation of µ, we submit that the model run-up
pattern, obtained from (25), based on a slowly varying depth, has successfully captured
all the essential features of this phenomenon, albeit excluding the first mode (n= 0).
However, the solutions with closed curves (µ < µn) cannot be simply interpreted.
That they correspond, for example, to solutions with ‘holes’ – where the bottom is
uncovered – is unlikely because, for µ � µn, the ocean extends no further than either
one or the other boundary curve, i.e. never beyond the one furthest inshore. For a
hole to appear, the water would need to extend beyond this furthest boundary (and
so exist indefinitely up the shoreline). We suggest, at this stage of the investigation,
that solutions for µ<µn do not describe a physically realistic phenomenon.

These edge waves have the familiar structure of a trapped wave, which is evident
here by virtue of the exponential decay (terms emθ , m =1, 2, 3, in (7) and (14)–(17)).
In particular, the amplitude function (which predominantly controls the form of the
surface wave), as a function of x, is

A0(X)eθ =
1√

B(εx)
exp

{
ω2

2�

∫ εx dX

B(X)
− �x

}
, (26)
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Figure 3. The amplitude of the edge wave, from the shoreline to the ocean, using (28) for
n= 2; starting from the upper curve: λ= 0 · 2, 0 · 13̇, 0 · 06̇, 0.

and this allows a detailed investigation of the effects of various depth profiles. This
amplitude in the presence of the uniform slope, B(X) = X, is proportional to

Zne−Z
(
Z = �x, ω2/2� = n + 1

2

)
, (27)

which we will need for the purposes of comparison. If the depth is finite at infinity
(X → +∞), then we may choose to model the bottom profile by

B(X) = B∞
(
1 − e−X/B∞

)
,

which satisfies the given condition B ′(0) = 1 at the shoreline; the amplitude is then
proportional to

λ−n(eλZ − 1)n exp
{

−
(
1 − 1

2
λ
)
Z

}
, λ = ε/(�B∞), (28)

where we require λ< (n + 1/2)−1 in order to maintain the exponential decay at
infinity. Expression (28) has been chosen so that it recovers (27) for λ→ 0 (at fixed Z),
enabling us to compare the results directly. The amplitude function from the shoreline,
seawards, for (27) and also some choices of λ in (28), is shown in figure 3 (all for
n=2). The effect of allowing finite depth at infinity is, not surprisingly, to increase
the maximum value of the amplitude function.

A more interesting example is provided by the case of a sand bar fairly close
inshore, in a depth profile that is otherwise linear. Some amplitude profiles, all of
which correspond to (27) as Z → 0, are shown in figure 4. The effect of a sand bar is
quite dramatic: there is a significant increase in the amplitude just behind (seawards)
of the bar (as alluded to in Howd, et al. 1992; see also Kirby, Dalrymple & Liu 1981).
Of course, any suitable depth profile can be chosen – perhaps a sand bar combined
with finite depth at infinity – and its effects investigated.

Finally, we collect these ideas and so present the leading term for the edge waves;
with the same notation as we used in (25), the surface wave is proportional to

Zne−Z cos ξ − µ

2(1 + 2n)
Z2ne−2Z (29)

in the case B(X) = X. An example of the surface profile (n = 4, µ = 4), with its run-up
pattern at the shoreline, is shown in figure 5.

5. The first mode (n = 0)
The solution that we have presented for the edge waves is uniformly valid only

if n= 1, 2, . . . , thereby excluding the first mode. In the case n= 0, with B(X) ∼ X

as X → 0, our expansions are not valid as X → 0: they break down where X =O(ε),
i.e. x = O(1). In this region, we seek a solution for εh � z � X = εx, and so we
introduce z = εZ and use x(rather than X). The leading-order problem, as ε → 0, is
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Figure 4. The amplitude of the edge wave (upper curves) in the presence of a sand bar (lower
curves). The sand bar starts at (a) Z = 1; (b) Z = 1.75. The curves (c) correspond to a uniformly
sloping bottom, without a sand bar.

then described by the equations

−ωuξ + αuuθ + �vuξ + uux + wuZ = −(αpθ + px),

−ωvξ + αuvθ + �vvξ + uvx + wvZ = −�pξ ,

pZ = 0; αuθ + �vξ + ux + wZ = 0,

with p =h and w = −ωhξ + αuhθ + �vhξ + uhx on Z =h and w = −u on Z = −x.
The exact solution of these equations, relevant in this context, has not been found,

but it is a routine exercise to show that a suitable expansion of the solution confirms
that matching is possible. In particular, when we seek a solution

φ ∼
∞∑

n=1

Fn(ξ, x, Z)enθ , h ∼
∞∑

n=1

Hn(ξ, x)enθ ,

where φ is the velocity potential (u = αφθ + φx , v = �φξ ), and solve at each order in
enθ , we find that

h ∼ Aeθ cos ξ − �2

2ω2
A2e2θ +

�3

4ω2
A3e3θ

{
e2�x

∫ ∞

x

e−2�y

y
dy

}
cos ξ

for arbitrary A (constant) and with truncation imposed beyond the term in e3θ . This
solution matches precisely to our expansion for h, (20), in the case n= 0 with X → 0.
If this were to be regarded as a reasonable model for the run-up pattern associated
with the first mode then, corresponding to (25), we would have

Y +

{
µe−Y + 1

4
µ3e−Y

∫ ∞

Y

e−2y

y
dy

}
cos ξ − 1

2
µ2e−2Y = 0,
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Figure 5. A three-dimensional plot of the surface wave (water in blue, bottom/beach in
red), based on (29) with n= 4, µ= 4.

with the same definitions as before (but Y here replacing the Z used in (25)). This
equation predicts a run-up pattern which can never accommodate cusps. However,
without the advantage of an exact solution of our set of equations, we can offer
no more at this stage; further investigation (perhaps numerical) is deferred for the
present.

6. The effects of a longshore current
Longshore currents are known to play an important role in the structure of edge

waves and, although they are not always present, they do occur often enough to
encourage further study (see Kenyon 1972; Howd et al. 1992). The variation of the
longshore current in the seawards direction is controlled, to some extent, by the depth
profile and so we assume in this model that it varies on the same scale as the depth.
The governing equations are precisely those already presented, in (1)–(4), but with
v(θ, X, ξ, z; ε) replaced by V (X) + v(θ, X, ξ, z; ε), where V (X) is the given longshore
current. Note that both V and v are the same size. The development follows very
closely that already described, and eventually produces, in place of (20), the surface
wave

h(θ, X, ξ ; ε) ∼ A0e
θ cos ξ − �2A2

0e
2θ

2(ω − �V )2
+ε

{[
U0V

′

�
eθ − U 3

0

8B

(
ω

�
− V

)
e3θ

]
cos ξ

+
U0

8

[
U 3

0

B
e2θ − 4U ′

0

�

]
e2θ cos 2 ξ +

U0

2

(
U ′

0

�
− U 3

0

2B
e2θ

)
e2θ

}
, (30)

where U0 = −�A0/(ω − �V ). The amplitude, A0(X), is now given by

A0B
′ + 2BA′

0 =
(ω − �V )2

�
A0 − 2�BV ′

ω − �V
A0,
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Figure 6. The effective depth profile (lower curves) associated with a longshore current
(upper curve) with k = (�X0)/ω, for k =09 and k = 14.

which yields (cf. (18))

A0(X) =
(ω − �V )

ω
√

B(X)
exp

{
1

2�

∫ X [ω − �V (X′)]2

B(X′)
dX′

}
. (31)

An additional factor of ω is included here in order to allow direct correspondence
with our earlier result, (18); we may elect to write the solution in this form because
of the arbitrary multiplicative constant that is associated with the indefinite integral
in the exponent.

It is immediately evident that (31) can be expressed in exactly the same form as
(18), where the B(X) there is replaced by the ‘effective’ depth profile

B(X) =
B(X)(

1 − �V

ω

)2
; (32)

see Howd et al. (1992). We assume that the longshore current satisfies V (X) < ω/�

for all choices of ω. (If V (X) approaches ω/� for any particular X, then presumably
edge waves no longer exist; we do not explore this complication here.) The result of
combining a typical longshore current of the form

V (X) = Xe−X/X0, X � 0, X0 > 0,

for example, with a uniform depth profile (B(X) = X), is to produce an effective profile
which can incorporate a sand bar (see figure 6). However, although A0 can be written
in terms of B , the rest of the expression for the surface wave, given in (30), requires
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explicit use of V (X); so for example, the leading approximation to this wave becomes

h ∼ A0e
θ cos ξ − �2A

2

0

2(ω − �V )2
e2θ ,

where A0 is A0 expressed in terms of B̄; this can be used to investigate the effects of
suitable choices for V (X).

7. Discussion
The classical water-wave problem, as it applies to the propagation of edge waves, has

been presented in a form consistent with the recent exact solution given by Constantin
(2001), but recast for an arbitrary depth profile that varies on a suitable small scale
(ε). The resulting problem, treated as asymptotic for ε → 0, is fully nonlinear at
leading order, but with a relevant exact solution. This solution has been used to
give a representation of the run-up pattern at the shoreline, and it would appear
that this captures most elements of the patterns that are observed (and are seen in
the exact solution for a uniform slope, Constantin 2001). However, our closed-form
results do not apply to the lowest mode (as interpreted by the value of n in the
context of the linear problem), although it is valid for all the other corresponding
modes. We have, therefore, given separately a description of the n= 0 problem, with
an indication that a solution exists which is consistent with the usual run-up pattern.
An additional complication in our theory is that the solution for the run-up pattern
(n �= 0) comprises two families, and there is no obvious way to select one rather than
the other (other than, possibly, by invoking the initial data for particular edge waves);
this aspect of the problem is still being explored. The structure of edge waves, away
from the shore, can be described for any suitable choice of depth variation. We have
included, as examples, the classical uniform-slope case, constant depth at infinity and
a model for a sand bar fairly close inshore. The latter two configurations lead to
an increase in the maximum amplitude of the edge waves, as compared with the
corresponding uniform-slope solution. Thus, our version of the theory of edge waves
is offered as a simple way, in the first instance at least, of providing an analytical
approach in the study of the effects of any chosen depth profile.

The longshore and cross-shore topography which ensures that edge waves can exist,
given suitable initial conditions, sometimes has an associated longshore current. This
we have also modelled by allowing the current to vary (seawards) on the same scale
as the depth profile. The analysis can be carried through, producing a description
which mirrors, in the main, the earlier results, by replacing the depth profile by an
effective profile which combines the actual profile with the longshore current. This
confirms the results obtained by Howd et al. (1992), although we have been able
to provide more details (showing, in particular, that the introduction of an effective
depth profile is not sufficient for the complete description of the wave, to leading
order). Again, these formulae for the structure of edge waves may be used to give –
albeit approximately – a simple analytical form of the waves, from the shore to the
open ocean.

With the continuing interests in nonlinear equations that are relevant to wave
phenomena, and which have exact solutions, we conclude by offering two versions of
an equation that might prove worthy of some further study. If we retain the terms
in ε, but consider the case of small-amplitude waves (proportional to δ, say; see (5)),
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then we obtain

α2φθθ + �2φξξ + ε[2αφθX + αXφθ + B−1(αB ′φθ − ωhξ )] = 0,

h − ωφξ + 1
2
δ
(
α2φ2

θ + �2φ2
ξ

)
= 0,

}

where we have retained terms as far as O(ε) and O(δ), but neglected terms O(εδ); φ is
the velocity potential. This pair has an exact solution, for any given and suitableB(X)
(with α = − �):

φ = A(X)eθ sin ξ ; h = ωAeθ cos ξ − 1
2
δ�2A2e2θ ,

where

A(X) =
1√

B(X)
exp

{
ω2

2�

∫ X dX′

B(X′)

}
.

This model contains a coupling between the two functions, φ and h; indeed, we may
eliminate h (and then h is given by the second of the pair) to produce

α2φθθ + �2φξξ + ε(2αφθX + αXφθ + αB−1B ′φθ ) − εωB−1ωφξξ − 1
2
δ
(
α2φ2

θ + �2φ2
ξ

)
ξ

= 0.

(33)

A reduced version of this equation, which retains the nonlinearity, is

α2φθθ + (�2 − εω2B−1)φξξ + 1
2
εδωB−1

(
α2φ2

θ + �2φ2
ξ

)
ξ

= 0,

which has been obtained by taking ε(∂/∂X) → 0, but treating εδ/B and εω2/B as
fixed. Further, because X now appears, at most, as a parameter in this equation, we
are at liberty to write it in a normalized form:

Φθθ +

(
1 − εω2

B�2

)
Φςς +

(
Φ2

θ + Φ2
ς

)
ς

= 0, (34)

which has the exact solution Φ = A(X)eθ sin ς , for arbitrary A, if we neglect the term
in ε. These two equations, (33) and (34), have exact single-component solutions. We
suggest that the search for other exact solutions – certainly those that represent the
interaction of different modes – is a worthy exercise (which might have to be initiated
by a numerical investigation). If this proves to be unsuccessful, the equations – but
particularly (33) – can still be used to construct asymptotic solutions for ε → 0,
because this is likely to be simpler than reverting to the original full equations, and
we can see that the equations contain all the essential ingredients for a description of
edge waves. These and related issues are to be examined in the near future.

The author is very pleased to thank to Professor Adrian Constantin for bringing
this problem to his attention, and for encouraging an asymptotic approach that
would complement his analysis. Acknowledgement is also due to the referees whose
comments led to a number of useful adjustments to an earlier version of this paper.

Appendix
The solutions given in (14), (15) and (16) are written, for convenience, as

w0 = w00 + w01z + W0, u1 = u10 + U1, v1 = v10 + V1,
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where w00(θ, X, ξ ), w01(θ, X, ξ ), u10(θ, X, ξ ) and v10(θ, X, ξ ) are defined by these
aforementioned equations. Then

p1 =

(
ω − �2

ω
A0e

θ cos ξ

)(
zw00 + 1

2
z2w01

)
ξ

− �2

ω

(
zw00 + 1

2
z2w01

)
θ
A0e

θ sin ξ + h1 + P1,

where

P1z =

(
ω − �2

ω
A0e

θ cos ξ

)
W0ξ − �2

ω

(
A0e

θ sin ξ
)
W0θ ,

with P1 = 0 on z = 0. The boundary conditions on W0 have now become W0 = 0 on
both z =0 and z = − B(X), which ensures that W0 does not contribute to the surface
wave. The resulting equations for W0, U1, V1 and P1 are solved by writing first

W0 =

∞∑
n=2

(Bzn + zn+1)Cn(θ, X, ξ ),

which gives

P1 =

∞∑
n=2

{(
ω − �2

ω
A0e

θ cos ξ

)
Cnξ − �2

ω
(A0e

θ sin ξ )Cnθ

}(
Bzn+1

n + 1
+

zn+2

n + 2

)
.

Now we expand U1 and V1:

U1 =

∞∑
n=1

Dn(θ, X, ξ )zn, V1 =

∞∑
n=1

En(θ, X, ξ )zn,

and, hence, we may solve sequentially for the coefficients of these series. We find that

D1 = −�

(
ω − 3�4

ω3
A2

0e
2θ

)
A0e

θ sin ξ, E1 = �

(
ω − �4

ω3
A2

0e
2θ

)
A0e

θ cos ξ,

D2 = − �

2B

(
ω − �

ω
B ′ − 3�4

ω3
A2

0e
2θ

)
A0e

θ sin ξ,

E2 =
�

2B

(
ω − �

ω
B ′ − �4

ω3
A2

0e
2θ

)
A0e

θ cos ξ, C2 =
4�6

ω3B
A3

0e
3θ sin ξ,

D3 = − 1
3
�BC2θ , E3 = 1

3
�BC2ξ , C3 =

16�6

3ω3

A3
0

B2
e3θ sin ξ,

and then

Dn = − �

n
(BCn−1 + Cn−2)θ , En =

�

n
(BCn−1 + Cn−2)ξ for n = 4, 5, 6, . . .

with

BCn+1 + Cn =
�

n + 1
(Dnθ − Enξ ) for n= 3, 4, 5, . . .

All these series converge for −1 � z/B � 0, with X > 0 and ∀ξ , provided that terms
such as (A2

0/B)eθ remain bounded for 0 <X < ∞; see § 4. This is sufficient to confirm
the existence of the solution that we have presented earlier.
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